
A Path Forward to Intrusive Sensitivity Analysis,
Uncertainty Quantification and Optimization

Eric Phipps
Optimization and Uncertainty Quantification Department

Sandia National Laboratories
Albuquerque, NM USA

etphipp@sandia.gov

NEAMS VU Workshop
April 7-8, 2009

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States

Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Embedded!

The Challenge For Embedded Methods

• Embedded/Intrusive Methods:
–  Exploiting simulation code structure for improved performance

(speed, accuracy, robustness,…)
–  Requiring more information from code beyond repeated simulation

• Performance advantages often remarkable
–  Intrusiveness into code often also significant

• Bridging the gap between algorithms research and applications is
the challenge
–  Requires significant effort and foresight of code developers
–  A priori unclear which, if any, methods will significantly impact

application

• A path forward is necessary that
–  Enables a wide variety of important embedded methods
–  Eases burden on simulation code developers

Overview

•  Sensitivity Analysis
–  Forward & Adjoint methods

•  Uncertainty Quantification
–  Stochastic Galerkin
–  Adjoint

• Optimization
–  NAND to SAND

•  A path forward
–  Code interfaces
–  Automatic Differentiation

0 = f(u̇(t), u(t), p, t), t ∈ [t0, tf]
u(t0) = u0(p)
u̇(t0) = u̇0(p)

v(p) =
∫ tf

t0

g(u̇(t), u(t), p, t)dt + h(u̇(tf), u(tf), p)

Mathematical Model

Steady-State Embedded Sensitivity Analysis

Forward sensitivities

•  Cost scales with number of
parameters

•  Solve system Jacobian

f(u, p) = 0, v(p) = h(u, p)

∂v

∂p
=

∂h

∂u

(
−

∂f

∂u

−1 ∂f

∂p

)
+

∂h

∂p

∂v

∂p

T

=
∂f

∂p

T
(

−
∂f

∂u

−T ∂h

∂u

T
)

+
∂h

∂p

T

Adjoint sensitivities

•  Cost scales with number of
observation functions

•  Solve system Jacobian-transpose

•  Small extension for Newton-based codes
•  Sensitivity (linear) solves significantly cheaper than (nonlinear) state solves
•  Accurate derivatives critical (can’t use approximate Jacobian)
•  Simulation code must evaluate observation functions & gradients

Adjoint sensitivities

•  Linear ODE for adjoint that must be
integrated backward in time

•  Requires full forward model
integration first (or check-pointing)

•  Cost scales with number of
objective functions

•  Petzold et al

Transient Embedded Sensitivity Analysis

Forward sensitivities

•  Linear ODE for sensitivities
solved alongside original model

•  Cost scales with number of
parameters

•  Hindmarsh et al

∂f

∂u̇

(
∂u̇

∂p

)
+

∂f

∂u

(
∂u

∂p

)
+

∂f

∂p
= 0, t ∈ [t0, tf],

∂u

∂p
(t0) =

∂u0

∂p
,

∂u̇

∂p
(t0) =

∂u̇0

∂p
,

∂v

∂p
=

∫ tf

t0

(
∂g

∂u̇

∂u̇

∂p
+

∂g

∂u

∂u

∂p
+

∂g

∂p

)
dt+

(
∂h

∂u̇

∂u̇

∂p
+

∂h

∂u

∂u

∂p
+

∂h

∂p

)∣∣∣∣
t=tf

d

dt

(
∂f

∂u̇

T

Λ

)
−

∂f

∂u

T

Λ +
∂g

∂u

T

= 0, t ∈ [t0, tf],

(
∂f

∂u̇

T

Λ

)∣∣∣∣∣
t=tf

=
∂h

∂u

T
∣∣∣∣∣
t=tf

,

∂v

∂p

T

=
∫ tf

t0

(
∂g

∂p

T

−
∂f

∂p

T

Λ

)
dt +

∂h

∂p

T
∣∣∣∣∣
t=tf

+

∂u0

∂p

T
(

∂f

∂u̇

T

Λ

)∣∣∣∣∣
t=t0

Costs and Benefits for Embedded SA

• Costs & Limitations
– Only local analysis
– Requires accurate derivatives
– Adjoint approach requires

specialized time integration tools
•  SUNDIALS, Trilinos/Rythmos

• Benefits
– Orders-of-magnitude cheaper than

global analysis
– More accurate, efficient, and robust

than finite-difference-based analysis
– Adjoint cost independent of number

of parameters
–  Foundation for optimization, error

estimation, and UQ

126 sensitivities in 9 simulation’s time!

Forward transient sensitivity
analysis of a Charon simulation
of a radiation-damaged transistor
with respect to damage
mechanisms using Rythmos &
Sacado (Phipps et al).

Embedded Stochastic Galerkin
Uncertainty Quantification Methods

•  Steady-state stochastic problem:

•  Stochastic Galerkin method (Ghanem, …):

•  Basis polynomials are tensor products of 1-D orthogonal polynomials of degree P
–  Gaussian (Hermite polynomials), Uniform (Legendre), …
–  Assumes independence of random parameters

•  Method generates new coupled spatial-stochastic nonlinear problem

•  Total size grows rapidly with degree or dimension
–  Exponential convergence in degree

Stochastic
dimension

Polynomial
degree

Number of
terms

5 3 56
5 252

10 3 286
5 3003

20 3 1,771
5 ~53,000

100 3 ~177,000
5 ~96,000,000

û(ξ) =
N∑

i=0

uiψi(ξ) → fi(u0, . . . , uN) =
∫

Γ
f(û(y), y)ψi(y)ρ(y)dy = 0, i = 0, . . . , N

0 = f̄(ū) =





f0

f1
...

fN




, ū =





u0

u1
...

uN





N =
(M + P)!

M !P !

P NM

Find u(ξ) such that f(u, ξ) = 0, ξ : Ω → Γ ⊂ RM , density ρ

Costs and Benefits of Embedded SG
• Costs & Limitations

–  R&D needed for effective implementation
•  Automated code transformation
•  Data structures and interfaces
•  Solver algorithms

–  Effectiveness in hard problems unknown
–  Likely requires significant HPC resources
–  Breaks down in presence of discontinuities

• Benefits
–  AD, quadrature and solver tools under development

•  Trilinos/Stokhos/Sacado
–  Potential for significant savings over non-intrusive methods
–  Potential for a posteriori error estimates
–  Generates a response surface that can be quickly sampled for

•  Probabilities, sensitivities, Bayesian methods (Marzouk et al)
–  Extensions

•  Local bases (Le Maitre et al), non-independent parameters (Wan et
al), stochastic model reduction (Doostan et al)

Adjoint-Based Embedded UQ Methods

•  Piecewise 1st order response surface over a grid (Estep, et al)

•  Leverages adjoint sensitivity tools
• Good performance in small dimensions against Monte Carlo

–  1-2 orders of magnitude reduction in number of samples/grid points
–  Computing each local response surface is fast
–  Number of grid points grows exponentially in number of dimensions
–  Unknown how it compares to other UQ approaches

•  Naturally adaptive
–  A posteriori error estimates and adaptivity
–  No trouble with bifurcations/discontinuities

•  Extension for inverse uncertainty problems (Butler & Estep)
•  No general purpose tools available

f(u0, p0) = 0, v0 = h(u0),
(

∂f

∂u
(u0, p0)

)T

Λ =
∂h

∂u
(u0)T

v(p) ≈ v(p0) −
(

∂f

∂p
(u0, p0)(p − p0)

)T

Λ

Embedded Optimization

•  Optimization for
–  Model Calibration
–  Validation (computing probability models for inputs of

multiscale/fidelity models, e.g., Arnst & Ghanem)
•  Nested Analysis And Design (non-intrusive to semi-

embedded)
–  Nonlinearly eliminate constraints
–  Compute reduced sensitivities using finite differences or

embedded sensitivity techniques
–  Linear convergence
–  Small to medium parameter spaces O(1-100)

•  Simultaneous Analysis and Design (embedded)
–  Solve optimization and constraints simultaneously

•  Eliminates constraint solves away from optimum
–  Built on the same tools as embedded sensitivities
–  Super-linear to quadratic convergence
–  First to second derivatives
–  Scalable to very large parameter spaces
–  Orders-of-magnitude more efficient than NAND

•  R&D necessary for challenging problems
–  Globalizations
–  Non-smooth systems
–  KKT solvers for 2nd-derivative-based methods

Reduced-space (super-linear
SAND) optimization of flow and
transport using Trilinos/
MOOCHO. Courtesy of B. van
Bloemen Waanders, SNL.

min
p

h(u, p) s.t. f(u, p) = 0

A Path Forward

• Significant R&D is needed for embedded methods
to impact your applications

• Application codes need to be “born” with these
technologies
– Retrofitting is difficult and almost never happens

• With the right hooks, this is feasible
– High-level application code interfaces

• Residuals, Jacobians, objective/observation
functions, parameter deriv’s, …

– Automatic differentiation
•  Tools to implement those interfaces

High-Level Application Code Interfaces

• Requirements for many embedded algorithms are simple
–  Set state values (u, du/dt)
–  Set parameter values (p)
–  Compute application residual (f)
–  Compute observation/objective functions (g, h)
–  Compute derivatives (df/du, df/dp, …)

•  Trilinos provides a unified application interface for all of its
embedded algorithms
–  Thyra::ModelEvaluator
–  Can provide decorators/wrappers for

•  SG residuals/Jacobians
•  Reduced sensitivities
•  Integration with Dakota

• Computing derivatives is usually the difficult part

Automatic Differentiation Provides Tools for
Implementing Embedded Algorithm Interfaces

•  Derivatives are critical for many embedded algorithms
–  Must be accurate and efficient

•  Automatic differentiation provides analytic derivatives with minimal
code development/maintenance
–  Derivatives at operation-level known, combined with Chain Rule
–  Any kind of first or higher-order derivative
–  SG polynomials, intervals, …
–  Automatically verified to be correct

• Good tools exist
–  Fortran -- Source transformation -- OpenAD/ADIFOR
–  C++ -- Operator overloading, templating -- Trilinos/Sacado
–  Demonstrated effectiveness, efficiency, and scalability for large-scale

simulations

•  Prescription for applying AD simple
–  Separate parts of the code to be differentiated from others (e.g., element

residual fill) with well-defined interfaces
–  Fortran – apply source transformation to those parts
–  C++ – template those parts for operator overloading

Concluding Remarks
• Potentially tremendous computational cost savings
with embedded methods

• Significant algorithms R&D is necessary to realize
those savings in applications

• Codes must be “born” with these technologies to
reap their benefits
– High-level application code interfaces
– Automatic differentiation to implement those interfaces

• Separate out differentiable pieces
•  Template those pieces (for C++ applications)

• Ideas are complementary to Dakota

References
•  Sensitivity Analysis

–  A. Hindmarsh,, P. Brown, K. Grant, S. Lee, R. Serban, D. Shumaker, and C. Woodward.
“Sundials: Suite of nonlinear and differential/algebraic equation solvers.” ACM Trans.
Math. Softw. 31(3): 363–396, 2005.

–  E. Phipps, R. Bartlett, D. Gay, and R. Hoekstra. “Large-Scale Transient Sensitivity
Analysis of a Radiation-Damaged Bipolar Junction Transistor via AD.” Advances in
Automatic Differentiation, C. Bischof, M. Bucker, P. Hovland, U. Naumann, and J. Utke,
eds., Lecture Notes in Computational Science and Engineering, 2008.

•  Uncertainty Quantification
–  B. Debusschere, H. Najm, P. Pebay, O. Knio, R. Ghanem, and O. L. Maitre. “Numerical

challenges in the use of polynomial chaos representations for stochastic processes.”
SIAM J Sci Comput, 26(2): 698–719, 2004.

–  D. Estep and D. Neckels. “Fast and reliable methods for determining the evolution of
uncertain parameters in differential equations.” Journal of Computational Physics, 213:
530–556, 2005.

–  H. Matthies and A. Keese. “Galerkin methods for linear and nonlinear elliptic stochastic
partial differential equations.” Comput. Methods Appl. Mech. Engrg. 194: 1295–1331,
2005.

•  Optimization
–  B. van Bloemen Waanders, R. Bartlett, K. Long, P. Boggs, and A. Salinger. “Large-Scale

Non-Linear Programming for PDE Constrained Optimization.” Technical Report
SAND2002-3198, Sandia National Laboratories, October, 2002.

•  Software
–  Trilinos (Rythmos, MOOCHO, Sacado, Stokhos, …): http://trilinos.sandia.gov
–  OpenAD: http://www.mcs.anl.gov/OpenAD/, http://www.autodiff.org
–  SUNDIALS: https://computation.llnl.gov/casc/sundials/main.html

Auxiliary Slides

Coupled System Embedded UQ Research

Input

Component 1

Output

Component 2

Input

Component 1

Output

Component 2
UQ Method

Sampling

Output
distribution
or statistic

Traditional
"Black Box"

Approach

Input
distribution

UQ Method
Integration

Deterministic Solver

Component 1

Output

Component 2

Input

Converged?
Yes

No

Input
distribution

Output
distribution

Yes

Converged?

Intrusive Coupled Approach
UQ Method 1

Sampling

Input Component 1 Output
Input Component 1 Output

Deterministic Solver 1

Input Component 1 Output

Input OutputComponent 2
Input OutputComponent 2

Deterministic Solver 2

Input OutputComponent 2

UQ Method 1
Integration

UQ Method 2
Sampling

UQ Method 2
Integration

No

Distribution

Distribution

Distribution

Input 2
distribution

Input 1
distribution

•  Invert layering of UQ around system
simulation

–  Apply UQ to each component
separately

–  Stochastic coupled solver technology
•  Potentially orders of magnitude savings

–  Heterogeneous UQ
–  Stochastic dimension reduction

•  Coupled systems generate large
dimensional stochastic spaces
−  10 for component 1 + 10 for

component 2 = 20 dimensions
− Cost grows rapidly with dimension

•  Inverted approach breaks growth
−  1-dimensional interface between

components
−  2 11-dimensional UQ problems

What is Automatic Differentiation (AD)?

•  Technique to compute analytic derivatives
without hand-coding the derivative
computation

•  How does it work -- freshman calculus
–  Computations are composition of

simple operations (+, *, sin(), etc…)
with known derivatives

–  Derivatives computed line-by-line,
combined via chain rule

•  Derivatives accurate as original
computation

–  No finite-difference truncation errors

•  Provides analytic derivatives without the
time and effort of hand-coding them

2.000 1.000

7.389 7.389

0.301 0.500

0.602 1.301

7.991 8.690

0.991 -1.188

•  Forward Mode:

–  Propagate derivatives of intermediate variables w.r.t. independent variables forward
–  Directional derivatives, tangent vectors, square Jacobians, when

•  Reverse Mode:

–  Propagate derivatives of dependent variables w.r.t. intermediate variables backwards
–  Gradient of a scalar value function with complexity
–  Gradients, Jacobian-transpose products (adjoints), when

•  Taylor polynomial mode:

•  Basic modes combined for higher derivatives:

AD Takes Three Basic Forms

Our AD Research is Distinguished by
Tools & Approach for Large-Scale Codes

•  Many AD tools and research projects
  Most geared towards Fortran (ADIFOR, OpenAD)
  Most C++ tools are slow (ADOL-C)
  Most applied in black-box fashion

•  Sacado: Operator overloading AD tools for C++
applications
 Multiple highly-optimized AD data types
  Transform to template code & instantiate on Sacado AD types
 Apply AD only at the “element level”

•  This is the only successful, sustainable approach for
large-scale C++ codes!

•  Directly impacting QASPR through Charon
 Analytic Jacobians and parameter derivatives

Basic Sacado C++ Example

#include "Sacado.hpp"	

// The function to differentiate	
template <typename ScalarT>	
ScalarT func(const ScalarT& a, const ScalarT& b, const ScalarT& c) {	
 ScalarT r = c*std::log(b+1.)/std::sin(a);	

 return r;	
}	

int main(int argc, char **argv) {	
 double a = std::atan(1.0); // pi/4 	
 double b = 2.0;	
 double c = 3.0;	
 int num_deriv = 2; // Number of independent variables	

 // Fad objects	
 Sacado::Fad::DFad<double> afad(num_deriv, 0, a); // First (0) indep. var	
 Sacado::Fad::DFad<double> bfad(num_deriv, 1, b); // Second (1) indep. var	
 Sacado::Fad::DFad<double> cfad(c); // Passive variable	
 Sacado::Fad::DFad<double> rfad; // Result	

 // Compute function	
 double r = func(a, b, c);	

 // Compute function and derivative with AD	
 rfad = func(afad, bfad, cfad);	

 // Extract value and derivatives	
 double r_ad = rfad.val(); // r	
 double drda_ad = rfad.dx(0); // dr/da	
 double drdb_ad = rfad.dx(1); // dr/db	

Steady-state mass transfer equations:

Efficiency of AD in Charon

Efficiency of the element-level derivative computation Set of N hypothetical chemical species:

•  Forward mode AD
–  Faster than FD
–  Better scalability in number of

PDEs
–  Analytic derivative
–  Provides Jacobian for all Charon

physics
•  Reverse mode AD

–  Scalable adjoint/gradient

slope

Verification of Automatic Differentiation

•  Verification of the AD tools
– Unit-test with respect to known

derivatives
– Composite tests

•  Compare to other tools
•  Compare to hand-derived
•  Compare to finite differences

•  Verification of AD in application
code
– Compiler drastically simplifies

this
– All of the standard hand-coded

verification techniques
•  Compare to finite differences
•  Nonlinear convergence

Independent Variables

Dependent Variables

…

…

…

…

Compiler type
mechanism will not
allow breaking the
chain from
independent to
dependent variables

Charon Drift-Diffusion
Formulation with Defects

Defect Continuity

Include electron capture and hole capture by defect species
and reactions between various defect species

Electric potential

Electron emission/
capture

Current
Conservation for e-

and h+

Cross section

Activation Energy

Recombination/
generation source

terms

Rythmos Sensitivity Analysis Capability
Demonstrated on the QASPR Simple Prototype*

*Phipps et al

1st-order Finite Difference Accuracy

•  Bipolar Junction Transistor
•  Pseudo 1D strip (9x0.1 micron)
•  Full defect physics
•  126 parameters

Sensitivities show dominant physics

Comparison to FD:
  Sensitivities at all time points
  More accurate
  More robust
  14x faster!

Sensitivities computed at all times
FD perturbation size

Application A
A(x,p) = 0

Application B
B(x,p) = 0

Application C
C(x,p) = 0

Time Integration Optimization UQ

Issues:
•  costly implementation
•  duplication of effort
•  difficult to maintain

....

....

Interfacing Abstract Numerical
Algorithms (ANA) To Applications

Application A
A(x,p) = 0

Trilinos Thyra::ModelEvaluator
f(x,p) = 0

Application B
B(x,p) = 0

Application C
C(x,p) = 0

Time Integration Optimization UQ

....

Interfacing Abstract Numerical
Algorithms (ANA) To Applications

http://trilinos.sandia.gov/

• Input requirements:
- State x
- Parameters p

• Output options:
- Residual f
- Jacobian df/dx
- Adjoint df/dx^T
- Parameter derivs df/dp
- Observation funcs g
- …

• Decorators:
- SG residuals/Jacobians
- State elimination
- Reduced sensitivities
- …

